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Davydov solitons in polypeptides

By A.C. ScorT
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

The experimental evidence for self-trapping of amide-I (CO stretching) vibrational
energy in crystalline acetanilide (a model protein) is reviewed and related to
A. S. Davydov’s theory of solitons as a mechanism for energy storage and transport
in protein. Particular attention is paid to the construction of quantum states that
contain N amide-I vibrational quanta. It is noted that the ‘N = 2’ state is almost
exactly resonant with the free energy that is released upon hydrolysis of adenosine
triphosphate.

1. INTRODUCTION

In living organisms a fundamental mechanism for the transfer of energy into functional proteins
or enzymes is the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate
(ADP) according to the reaction

ATP* +H,0 > ADP* + HPO? + H*. (1.1)

Under normal physiological conditions about 10 kcal mol™'1 or 0.422 eV of free energy is
released by this reaction (Fox 1982), which leads to several interesting questions: how is this
free energy transferred into protein? How is it stored there? How does it move inside a protein?
How is it transformed into useful work?

To answer questions of this sort a theory was proposed by Davydov & Kislukha (1973), which
focused attention on the self-trapping of molecular vibrational energy in the amide-I (or CO
stretch) vibration of the peptide unit (CONH), a basic structural element of all proteins.
Roughly speaking, it was proposed that the localization of amide-I vibrational energy would
alter the surrounding structure (primarily the hydrogen bonding) and that this local alteration
would, in turn, lower the amide-I energy enough to prevent its dispersion.

At about the same time as the original paper by Davydov & Kislukha (1973), Careri (1973)
published some unexpected spectral measurements in the amide-I region of crystalline
acetanilide (CH;CONHCH;), or ACN. As the temperature was lowered from room tem-
perature, he observed an anomalous amide-I band (at 1650 cm™!) growing up on the red side of
the normal amide-I band (at 1665 cm™!). This 1650 cm™! band was called anomalous because
it could not be explained with accepted concepts of molecular spectroscopy (for example, Fermi
resonance, Davydov splitting, etc). At first Careri suspected some unusual one-dimensional
phase transformation might provide an explanation, but no such evidence was found after
several years of experimental work. Recently a self-trapping theory was proposed (Careri et
al. 1983), which is closely related to that of Davydov and explains the salient experimental
facts (Careri et al. 1984 ; Eilbeck et al. 1984).

The present situation, therefore, is that the 1650 cm™ band in ACN seems to provide direct
experimental evidence for a self-trapped state of molecular vibrational energy. The ‘red shift’

t 1 kcal = 4.184 kJ.

[ 89 ]

a5
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MIKOIY
Www.jstor.org


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

424 A. G. SCOTT

of 15 cm™! from the normal band can be considered as the binding energy of a ‘Davydov-like’
soliton, and this interpretation leads to quantitative predictions of biological significance.

This paper is organized into three broad phases. The first is a review of Davydov soliton
theory and the experimental observations in crystalline acetanilide. The second phase is a
detailed comparison of various attempts to provide a quantum mechanical explanation for
self-trapping of molecular vibrations. Finally, some questions of biological significance are
briefly considered.

Before turning to the details let me interject a comment on the nature of research in biophysics
and in biology. Biophysics, in my view, is different from biology. Biophysics attempts to make
known the mechanisms that are possible in biological organisms and those that are not. Given
this ‘menu of possible mechanisms’, it is the task of true biological research to make known
what actually happens in an organism. This paper is primarily an exercise in biophysics.

2. DAVYDOV SOLITON THEORY

This section is intended to provide a brief summary of Davydov soliton theory for the
convenience of the reader. Such a summary is helpful to appreciate the differences between
the theory of self-trapping proposed for proteins and the theory proposed recently to explain
experimental measurements on crystalline acetanilide. It is also necessary to see how the
quantum theory developed by Davydov as a basis for self-trapping is related to other quantum
analyses. Several detailed surveys of this work are available for further reference (Davydov
19794,19825), and a somewhat more general analysis has recently been published by Takeno
(1983).

Consider the a-helix structure of protein that is shown in figure 1. Careful inspection reveals
three channels situated approximately in the longitudinal direction with the sequence

---H-N-C=0---H-N-C=0---H-N-C=0---H-N-C=0- --,

where the broken lines represent hydrogen bonds. One of these channels is indicated by
hatching on figure 1. For a detailed analysis it is necessary to consider the interaction of all
three channels, but one is sufficient to lay out the basic ideas.

A single channel is governed by the energy operator

ﬁ= ﬁco+th+ Aint. (21)

(Throughout this paper the circumflex will be used to indicate an operator.) Taking the
components of H in order, Hg is an energy operator for the CO stretch (amide-I) vibration
including the effects of nearest-neighbour dipole-dipole interactions. Thus

ﬁco =2 [E, iJL gn_‘](élﬁﬂ Bn+l;jz i’n+1)]> (2.2)
n

where E, is the fundamental energy of the amide-I vibration, —J is the nearest neighbour
dipole—dipole interaction energy, and 6},(4,) are boson creation (annihilation) operators for
amide-I quanta on the nth molecule.

-

H,, is the energy operator for longitudinal (acoustic) sound waves. Thus

Hy, =3 2 (M7 4 Wiy i )), (2.3)

[ 90 ]
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DAVYDOV SOLITONS IN POLYPEPTIDES 425

where M is the mass of a molecule, W is the spring constant of a hydrogen bond, p, is a
longitudinal momentum operator for the nth molecule, and 4, is the corresponding longitudinal
position operator.

Ficure 1. The atomic structure of a-helix in protein. One of the longitudinal, hydrogen-bonded,
peptide channels is shown hatched.

Interaction between amide-I vibrations and longitudinal sound waves occurs through the
interaction energy operator
ﬁint = Xa 2 (ly —ty—y) bAIz bas (2.4)
where y, is the derivative of amide-I vibrational energy with respect to the length (R) of the
adjacent hydrogen bond. Thus X, = dE,/dR. (2.5)

Values for the parameters in these equations are listed in table 1.

TABLE 1. PHYSICAL PARAMETERS FOR DAvyYDOV’s HAMILTONIAN

parameter value unit references
E, 0.21 eV Nevskaya & Chirgadze (1976)
J 7.8 cm™! Nevskaya & Chirgadze (1976)
M 114 my, Scott (1982, 1983)
w 13 Nm™ Itoh & Shimanouchi (1972)
Xa 6.2x10™11 N Careri et al. (1984)

[ 01 ]
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426 A. C. SCOTT

It is interesting to observe that this is a biological problem for which all the physical
parameters have been determined.
Davydov minimizes the average value of H with respect to the wavefunction

95 = Zan(t) exp [6(0)] 8,10, (2.6)

where 6=~ % [Ball) f—mal0) ] (2.7)
A straightforward calculation shows that

Balt) = <yl |9 (2.8)

and ma(t) = < f |9 (2.9)

The wavefunction in (2.6) will be called Davydov’s ansatz throughout this paper. One of the
aims here is to study the range of validity of this ansatz.

Assuming that Davydov’s ansatz approximates the true wavefunction, (2.8) and (2.9) show
that £, and m, are the average values of the position and momentum operators respectively.
Furthermore, 4, is the probability amplitude for finding a quantum of amide-I vibrational
energy on the nth molecule. The normalization condition {y | ) = 1 implies that

Yla, =1 (2.10)

Thus Davydov’s ansatz describes the dynamics of a single quantum of amide-I vibrational
energy.

Minimization of {y | H|%) with respect to a,, 3, and m,, leads to the differential difference
equations

., d

(‘ﬁd_fEO) tn+ I (g1 + 2y 3) = Xa(Bn—Fns) @y =0, 2.11a)

ML W By =2t Bas) = Xall @ 0y ] (2.115)
d2 n+1 n n—-1) = Xall @p+1 nl 1 .

Extensive numerical and theoretical analysis of (2.11) yields the following results (Scott 1982,
1984; MacNeil & Scott 1984). (i) It is reasonable to expect soliton formation at the level of
energy released by ATP hydrolosis (1.1), and (ii) such a soliton travels rather slowly with respect
to the speed of longitudinal sound waves. This suggests neglecting the kinetic energy of
longitudinal sound by assuming f,, = 0, whereupon

ﬂn_ﬂn—l z"Xalaan/W (2~12)

and, in this ‘adiabatic approximation’, (2.11) becomes

., d
(#5— Ba) an + S @niat a0 ) +7alan Py = 0, (213

where Yo = X2/W. (2.14)

Davydov has emphasized that a solitary wave solution of (2.11) cannot be created directly
by absorption of a photon because of an unfavourable Franck—Condon factor. This is because

[ 92 ]
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DAVYDOYV SOLITONS IN POLYPEPTIDES 427

the necessary intermolecular displacement in (2.115) cannot occur in a time that is short enough
for photon absorption. The Franck—~Condon factor will be discussed in detail in the following
section.

3. SELF-TRAPPING IN CRYSTALLINE ACETANILIDE

A unit cell of crystalline acetanilide (ACN) is shown in figure 2. Just as in the a-helix, careful
inspection of figure 2 reveals channels situated in the b-direction with the sequence

---H-N-C=0---H-N-C=0---H-N-C=0---H-N-C=O0---.

béﬁ ° O™
(0] ;
S md
o] oH Y o @

¢ eV NN SN 4

FaNa
©

N

Frcure 2. The unit cell of crystalline acetanilide.

Recent infrared absorption measurements on microcrystals of ACN are shown in figure 3.
Attention here is focused on the band at 1650 cm™!, which rises with decreasing temperature
to become the dominant spectral feature below 100 K.

When this band was discovered, Careri (1973) suspected it to be caused by a subtle phase
change along the b-direction of the crystal, but careful studies over a period of several years
(Careri et al. 1984) failed to reveal any such evidence. The lack of a viable alternative eventually
led to the suggestion that the 1650 cm™ band might be caused by direct absorption of an
infrared photon into a self-trapped state similar to that proposed by Davydov. The qualifier
‘similar’ is important because, as was noted above, the Franck—Condon factor is unfavourable
for direct photon absorption by a self-trapped solution of (2.11).

The corresponding theory proceeds, as in the previous section, by defining the energy
operator

H = Hyo+ Hy, + Hipy, (3.1)

where Hg, is again given by (2.2), but with (Eilbeck et al. 1984)
J =396 cm™L (3.2)

[ 93]
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428 A. C. SCOTT

In the present analysis, however, self-trapping is assumed to be caused by interaction with an
optical phonon rather than an acoustic phonon. Thus

Ay =42 [ +ug) (33

and (3.4)

absorption

1 I ! I L I
1630 1650 1670 1690
v/cm™!

Ficure 3. Infrared absorption spectra in the amide-I (CO stretching) region of crystalline acetanilide.
(From Careri ef al. 1984.)

Minimization of <y | H|4) with respect to the parameters of the Davydov ansatz wave-
function (2.6), where

i A
n
leads to the dynamic equations
., d
i a;_Eo ay+J (a1t ay 1) = XoGnan =0, (3.6a)
4z
" dtqzn_qu = Xola, *. (3.65)
As before
9n(t) = 1 Gn Y- 3.7)
The adiabatic approximation (¢, = 0) reduces (3.6) to
., d
(lﬁ Et—Eo) ay+J (a1 +ay ) +Yola, P a, =0, (3.8)

[ 94]
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DAVYDOV SOLITONS IN POLYPEPTIDES 429
where Yo = X/ w. (3.9)

A detailed numerical study of a system of equations similar to (3.8), but representing one
hundred molecules of ACN in two coupled channels has recently been made by Eilbeck et al.
(1984). This work shows that the red shift from the normal amide-I band at 1665 cm™! to the
1650 cm™! band is best fitted by choosing

Vo = 44.7 cm™L, (3.10)

We turn next to an estimate of the Franck—Condon factor for direct photon absorption by
a self-trapped state of (3.6). Before absorption |4, > = 0, and after absorption |a, |? # 0 over
a localized region, such that (2.10) is satisfied. Thus the ground state wavefunction of (3.65)
must shift from .

[ ¥y 2 Y
D, = (ﬂﬁw) exp( q5, Qﬁw) (3.11)
before absorption to _ w \i w
L — 22 W
D, = (ﬂfi(u) exp[ (gn+7Yolanl?) 2ﬁa)] (3.12)
i h
after absorption, where 0 = (w/m) (3.13)

is the frequency of the optical mode that is mediating the self-trapping. The transition
probability for soliton absorption is therefore reduced by the Franck—Condon factor

2
(J 20 2ot > exp (—yu/280), (3.14)
which is close to unity for 7o < i, (3.15)
The frequency (w) of the optical mode can be determined from the temperature dependence
of the 1650 cm™ line in figure 3. Such temperature dependence is expected, because the
probability of (3.65) being in its ground state, and therefore able to participate in self-trapping,
is [1—exp (—fiw/kT)]. Thus as temperature is raised, the low temperature factor given in
(3.14) should be reduced by the additional factor [1 —exp (—fw/kT)]%. A least-square fit to
intensity data of figure 3 is obtained for iw = 131 cm™. Together with (3.10) this implies that
exp (—7,/2fiw) = 0.84.
Further evidence tending to favour a self-trapping explanation for the 1650 cm™ band is
the recent observation of the overtone series shown in table 2 (Scott et al. 1985).

TABLE 2. OVERTONE SERIES FOR THE ACN SOLITON

N v»(N)/cm™ energy/eV
1 1650 0.205
2 3250 0.403
3 4803 0.595
4 6304 0.782

Since the overtones N = 2 are in some sense self-trapped states involving more than one
quantum of the amide-I vibration, it is interesting to consider self-trapped states that avoid
the constraint of (2.10).

28 Vol. 315. A
[ 95 ]
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430 A. G. SCOTT

4. Tue QUANTUM THEORY OF SELF-TRAPPING

In this section we approach the problem from a classical perspective (Takeno 1984). Starting
with the classical amide-I coordinates, P, and @, for which the Hamiltonian is 3, (P2 + Q2),
it is convenient to define the complex mode amplitudes

4, = 0i(P,+iQ,). (4.1)
In terms of these complex mode amplitudes (including dipole—dipole interactions)
E
HCO = 2 [70 ' An 12—J(A1*;+1 An+A:An+1):l ’ (4'2)
n
where w, = E/# (4.3)

is the classical oscillation frequency of an amide-I vibration. (From here on we will assume
fi = 1 and measure energy and frequency in the same units.)
With a classical interaction energy

Hiny =X % Il 4y % (4.4)
where ¢, is the coordinate of some low frequency phonon with adiabatic energy
Hyn =30 2 43, (4.5)
one arrives at the total classical Hamiltonian
H = Hyo+ Hy, + H,\ys. (4.6)

Minimizing (4.6) with respect to the ¢, requires

In = —;’f)—lAn 12 (4.7)
whereupon (4.6) can be reduced to
H= % [Eo| Ay 1= J (A7 1 Ay + A7 Ayiy) =3y 1 4, ], (4.8)
where v =y w. (4.9)
The corresponding dynamical equation for 4,, is
(i %—EO)A,,+J(A”+1+A,H) tyld, 24, = 0. (4.10)

In addition to the energy, H, another constant of the motion along solutions of (4.10) is the number
N=2X|4, (4.11)

n
Up to this point the discussion of the present section has been entirely classical. We now
consider quantization in four special cases: (i) J < y; (ii) y < J; (iii) semiclassical quantization;

and (iv) the Davydov ansatz. In each case it will be of particular interest to calculate an
overtone series corresponding to that presented in table 2 for crystalline acetanilide.

[ 96 ]
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(i) J<vy
In this case we neglect the dipole—dipole interaction terms in (4.8) and (4.10), and write
the energy H=Xh, (4.12)
n
where h, = E |4, >—%y|4, % (4.13)
Under quantization, the terms in (4.12) become operators
hy—>h, (4.14)
through replacement of the complex mode amplitudes by creation and annihilation operators
for bosons. Thus An—>5na (4.154)
Ax b}, (4.15b)
Since the ordering of these operators is not determined by (4.13), we take the averages
| A|2>1(6%6 +bbT), (4.18)
| A4 —>3(61516b+b1681b + 51b6bt + b6 b6t + bb6THT + bbt15), (4.17)

where the subscripts have been dropped for typographical convenience. Noting that bt and
b have the properties 61| N) = (N+1)}|N+1)> and b|N) = N}{N—1) (where |N)
is an harmonic oscillator eigenstate), it is straightforward to show that

h = (Ey,—Yy) (bth+1) —Lybthbth. (4.18)

Thus ﬁaN> = E(N)| N>, (4.19)
where E(N) = (E,—Yy) (N+1)—LyN2. (4.20)
In summary, eigenvectors of the operators defined through (4.13), (4.14), (4.16) and (4.17)

are identical to those of an harmonic oscillator, but the corresponding eigenvalues are given
by (4.20).
The form of (4.20) is significant; it can be written as

E(N) = EC+ EV+ ENL, (4.21)
where EC€ is the ground state (N = 0) energy, E* oc N and
ENL = _1yN2, (4.22)

This ‘nonlinear’ contribution is directly measured from the overtone series in table 2

(i) v < J
In this case the classical equation (4.10) reduces to the nonlinear Schrédinger (n.l.S.)
equation of soliton theory. To see how this goes, assume the repeat distance between molecules
is d and replace the discrete variable » by a continuous variable, x = n, which measures distance
in units of d. Then (4.10) takes the form
( aQ—E +2J)A+Jaa—13+'y|A|2A=0. (4.23)
28-2

[ 97 ]
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432 A. G SCOTT

Quantization of this equation was originally achieved by using the Bethe ansatz method,
and recently it has been shown that such solutions can be efficiently constructed from a quantum
version of inverse scattering theory (Sklyanin & Faddeev 1978; Thacker & Wilkinson 1979).

Under quantization, the functions, 4 and 4* are replaced by annihilation and creation
operators for boson fields, gAS and gAST. At equal times these have the commutation relations

[$(x), d(1)] = [$1(x), T (1)1 =0 and [P(x),'(y)] = d(x—y).

In terms of the previous discussion, it is evident that qAS(x) is equivalent (under scaling) to 5n
in the continuous limit » = x. In effecting this limit two procedures are customary: (i) neglect
consideration of the ground state energy, which is unbounded in the limit, and (ii) ‘normal
order’ all operator expressions, i.e. move all creation operatbrs to the left.

Since 66" = b'h+ 1, normal ordering of (4.18) and neglect of the ground state energy imply

o (4.24)
Thus to put (4.23) in standard form for quantum analysis, let
A=Dexp[—i(E,—2J—7y)t] (4.25)
and scale time as ¢—>¢/J. Then (4.23) becomes
i®,+D, +y|PPD/J =0, (4.26)

where a subscript notation is used for the partial derivatives. Under quantization @ > and
(4.26) becomes the operator equation

i+ b tv9'88/ 7 =0 (4.27)

with energy operator {
A= [ardi by [axdigd, (4.28
number operator N= fdx ¢A5T§ZA5, (4.29)
and momentum operator P=—i de qASTqASx (4.30)

The quantum inverse scattering method provides exact wavefunctions, | ¢ ), that diagonalize
N, P and H as follows (Wadati 1985),

Nly>=Nly>, (4.31)
where N = integer > 0, (4.32)
Plyy = Nply>, (4.33)

where p is a real number, and
H|y > = [Np*+y* (N—=N?)/48 ]| ). (4.34)
Furthermore, in the limit y/J->0 (Thacker & Wilkinson 1979)

> f dx elPZdt | 0). (4.35)

[ 98]
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Equations (4.32) and (4.34) imply an overtone series
E(N) = EV+ ENL, (4.36)
where E¥ oc N and ENL = —y2 N3/48 J?. (4.37)

(1i1) Semiclassical quantization

In the parameter range y & J, no exact quantization procedure is known to the present
author. It is, however, possible to impose elementary quantum conditions on stationary
solutions of (4.10). By writing such a solution in the form

Ji (E
4, = o % &P [—1(—Jg+w)t] , (4.38)
(4.10) reduces to the standard form

wo, +o, +o, +ad =0. (4.39)

By using a ‘shooting’ method (Scott & MacNeil 1983) it is possible to find a family of numerical
solutions for (4.39) with the following properties: (i) e, = a_,; (ii) for n > 0, a,, > ¢, ,,; and
(iii) lim,,_,, &, = 0. From such a solution the conserved quantities / and N defined in (4.8)
and (4.11) are readily calculated as

v=Isa (4.40)
Y on
S oty ol
and H(N)=\E—J2——F | N-yN?*"—. (4.41)
S a (£2)
n n
Semiclassical quantization (Percival 1977) is effected by noting that stationary solutions are
of the form )
An(t) = Ano exp [_le(t)]a
where 6 = dH(N)/dN. (4.42)

Thus N and 6 are conjugate variables and the quantum condition

§Nd0 = 21 (integer) (4.43)
together with the definition of N (4.11) imply
N = integer = 0. (4.44)
Equation (4.41) has the form E(N) = EL+4 BN, (4.45)
2
where ENL = —1lyN? (Z a;)/(z ai) . (4.46)
n n

In the limit J € y,a, < o, for |[n]| > 1 so (4.46) evidently reduces to (4.22). In the limit
v < J, it is straightforward to show that (4.46) reduces to (4.37). Thus (4.46) is expected
to provide an accurate calculation of EN' over the entire parameter range and is sketched in
figure 4.

[ 99 ]
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434 A. C. SCOTT

It is now possible to consider how data from the overtone series for the 1650 cm™! band in
acetanilide compares with these calculations. From (3.2) and (3.10)

Yo/J = 11.3. (4.47)
Figure 4 shows that this lies in the range for which
E(N)=E,N—}yN?, (4.48)
10 T T T T T S
T
5} A S
/[ 7
/
2 / / /"_-.
/ //
L1 / -
al
% /
| 05 /
o2t Davydov's
01 -
N=4 3 2 1
005 [/ /[ [ ! L1
01 02 05 1 2 5 10 20 50
v/J

Ficure 4. The nonlinear contribution to the energy level (ENY) as a function of the ratio of anharmonicity to
dispersion (y/J). N is the number of amide-I quanta. Experimental points are from measurements of the
overtone series in crystalline acetanilide (see table 3). Broken lines indicate parameter ranges for which the
wavefunction is not known.

so the line at 1650 cm™ implies that
E, = 1672.3 cm™. (4.49)

From the measured values of overtone frequency, v(N) in table 2, the nonlinear contributions
to the overtone spectrum can be calculated to be

ENL = y(N)— NE,. (4.50)

In table 3 we compare these calculations with those computed from (4.48). The measured values
of ENL are indicated on figure 4.

TABLE 3. NONLINEAR TERMS IN ACN OVERTONE SERIES

N —ENY/cm™! (—1N?%)/cm™
1 22 22
2 95 89
3 214 201
4 385 357
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(iv) Davydov’s ansatz

We are now in a position to evaluate Davydov’s analysis. In the context of an adiabatic
approximation, the wavefunction introduced in (2.6) takes the form

1Y > =3 a,(t) 61,10, (4.51)

where the a,(f) are solutions of (2.13). This form of the Davydov ansatz has the following
properties.

(i) In the limit J < 7, it reduces to the first eigenfunction, |1 ), in (4.19).

(ii) In the limit y < J, it reduces to the asymptotic form of Bethe’s ansatz in (4.35).

(iii) Between these two limits, Davydov’s ansatz gives energies that agree with semiclassical
calculations.

Thus one concludes that Davydov’s ansatzis a useful approximation to the exact wavefunction
over the entire parameter range 0 < y/J < oo with the constraint (2.10), which implies N = 1.

BIOLOGICAL SIGNIFICANCE OF SELF-TRAPPING

Measurements on crystalline acetanilide (ACN) confirm Davydov’s theory of self-trapped
states (solitons) in hydrogen-bonded polypeptide chains. Furthermore, table 2 shows that the
‘N = 2’ state in ACN can absorb almost all (959%,) of the free energy released in hydrolysis
of ATP. It is reasonable to suppose that a corresponding state can form on the hydrogen-bonded
polypeptide chains of a-helix (figure 1).

Over a decade ago McClare (19724,b) argued that the free energy released in ATP hydrolysis
should transfer resonantly into a protein to avoid thermal degradation. To store and transport
this energy he proposed an ‘excimer’ state in protein, which would be closely related to the
amide-A band of a-helix at 3240 cm™! (McClare 1974). McClare’s excimer is qualitatively
similar to the ‘conformon’ of Green & Ji (1972) and the basic properties of both are provided
by a Davydov soliton in the ‘N = 2’ state (Davydov 1973, 1974, 1977, 19795, 1982a). In the
past such suggestions have been rejected or ignored by the biochemical community because
a localized region of free energy within a protein was believed to be physically impossible. Since
this view is no longer tenable, the early proposals of Davydov (1972), McClare (1972), and
Green & Ji (1972) must be re-evaluated. A recent paper by Careri & Wyman (1984), suggesting
a soliton mechanism for cyclic enzyme activity provides a first step in this direction.

The author expresses his thanks to L. Pauling for providing figure 1, to L. MacNeil for
figure 2, and to E. Gratton for figure 3. This work was done under the auspices of the U.S.
Department of Energy.
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Dascussion

M. TaBor (Department of Applied Physics, Columbia University, New York, U.S.A.). Is it clear that
the energy trapping is due to nonlinear, soliton-like effects rather than transitions to other

electronic states?
A. C. Scorr. Yes, for crystalline acetanilide this is quite clear. Every effort has been made to find

an explanation for the 1650 cm™ line that does not involve nonlinear effects (see Careri et al.
(1984)), but nobody has been successful.

[ 102 ]


http://rsta.royalsocietypublishing.org/

